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On Asymmetric Stochastic Bang-Bang Control

by

Howard J. Weiner

1. Introduction

Three stochastic bang-bang control problems are considered, the

predicted miss, the linear regulator, and a simple complete observation

model (El],(2],[31)%, which have been solved f or symmetric constant bound

on the control function u(t) ,0 < t < T. Here asymmetric, finite

bounds on u(t) are considered.

To state these problems we use the notationi and definitions of

II. Predicted Miss

Let A(t), B(t), C(t) be, respectively, dxd, rxd, and dxd matrix-

valued continuous functions on [0,T] with

(aC~)C(te)> 0(rg > 0

d d
for all t E[0,TJ anid q ERd where (akb>. Zab.
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Denote the system equation by

dX(t) A(t)X(t)dt + B(t)u(t)dt + C(t)dW(t)

X(0) -G E Rd  (1)

and W(t) is standard d-dimensional Wiener process. Transpose A is indicated

by A'.

Assumption: The admissible control set a consists of the set

of processes

u(t) a u(t,w) such that - m < a < f(t) < u(t,w) < g(t) < b<

where f(t) < g(t) are bounded continuous non-random given functions on

[0,T] , and f(O) + g(O) - 0.

The Girsanov Theorem may be used to solve (1) in law (i.e. there

is a weakC, solution. The boundedness of u(tw) insures that for any

given u E C, there is a "uinique solution to (1) by ([4)), Theorem 1).

Given a fixed vector Y, the cost corresponding to u E C is

J(u) -E u(A(<Y,X(T)>)

where for each u, there is a probability space (CI,Y,P ) with

0 - Cd [o,T, X(t,w) : d - is the coordinate map X(t,w) =w(t).

Then for u E a, P on*( 1,7), where Y - a(X(s), 0 < s < T) is such that

P [X(0)-G] - 1 and the process W(t,u) defined by
U

W(t,u) - I (s)dX(s) C f'c, (s)[A(s)X(s)+B(s)U(s)]ds is
0 0

d-dimensional Wiener process. Hence

J(u) a [£(<y,X(T)>) dP - E A(<Y,X(T)>).

where

£ : R- R has these properties:
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i) £is even £,(,) (-)

(ii) A is continuously differentiable for x > 0

and £'(x) 2O all x>0

(iii) A(x- O(exp &1x1), some 6 > 0.

The object is to find optimal u 0(t) such that

J(u 0) min J(u).
uEa

Contin~uing the exposition in [2),* if X(t) - x, and u( A) 0,

t < <T,

then

E[('Y,X(T)>IX(t) = x] (y,1 0'(t,T)x)

where 0 is the solution operator for (1) when u =0.

De Iine

Then s(t) satisfies

ds(t) - -A'(t)s(t), B(T) - y

and

E (y,X(T))IX(t)J - (s(t),X(t)) IS m(t).

Then m(t) satisfies

dm(t) - (B'(t)a(t), u(t))dt

+ (C'(t)*(t), dW(t~u))

or, equivalently,

da(t) - (b(t). u(t))dt + dv(t)

m(O) - (s(O), G). (2).
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The cost is expressed as

J(u) - u [1(m(T)))

Theorem 1 Under conditions above in II, the optimal control u0 (t) is

expressible by components, 1 < i < d, with u0 M (UoL,...uOd),

as

fi(t) + g(t)
uoi(t) - 2

2 sign [rm(t) E J bA(s)(fA(s)+gA(s)>dsjbi W) (3)

Proof. First assume fi(t) + gi(t) O, all I < i < d and set

h (t) = gi(t) - i ()
1 2

In this case, note 0 < h1 (t) < 1a1+1bi, i < i < d and by [4], since

lu,(t)1<- hi(t), then (2) has a unique solution with u = uo.

Set

dm(t) = (b,u)dt + dv then it follows by the same argument

as in [2] that

u0 (t) - -(h L(t) sign (m(t)bL (t)) . (4)

is optimal for the symmetric control case. In general, by the argument

of ([21, pp. 207-208), one may invoke symmetry by utilizing a

4



switching curve k(t) such that if

m(t) * m(t) - k(t), then it would follow that

d;m(t) - (b,u > ~dt + dv(t).()

To accomplish (S).it clearly suffices to set

-dk (t) -Id

dt 2 Aw b

and k(T) -0,

which allows J~m(T)) -J(m(T)). (6)

Hence (4) - (6) suffice for the proof of (3).

111. Linear Regculator.

A one-dimnensional Linear regualator problem, following [31 is

defined as follows: The one-dimensional process X(t,w)is

given by

dX(t,w) - (aX(t,w) + u(t,w))dt + dW (t~w)

with

X (O.w) - X0 (W)

and observation equation

dY(t,v) - cX(tvw)dt + dW 2 (t,w) (7)

and

Y(0,w) - 0

for

0 < t -; T

where

a > 0, c > 0 are constants, Vl'W are independent
5'



one-dimensional Wiener processes. Let ( u,,e,) be Q = C[OT],

=(X(s), 0 < <T), and P correspond toWl, 2 ^

Let the performance index, as a function of a given control u be

T T

J(u) M J E (X2 (s))ds 3 J X 2(s,u)dP (8)
0 0

and the set of admissible controls a is given by

a - (ul Iu(t,,)l < g(t), 0 < t < T, (9)

with continuous g(t) > 0, 0 5 t < T.

A control U0 E a is optimal if

J(u0) J 3(u) all u E at.

This problem may be recast as a complete observation control problem,

following ([3], eq. (3.19) - (3.21)). The new state variables are

R(tw) and satisfy

dR(t,w) - (aR(t,w) + u(t,w))dt

+ c p(t) dW3 (t,w)

R(O,w) -E X 0(w)

and J(u) - E(R 2(s))ds (10)

where W3  is a Wiener process, and the function p(t) satisfies a

Riccati equation

- 2sp(t) + 1 -C2p 2(t) 0 < t < Tdt-- -

p(0) - (X0 2 )  (SX0)2 VarX L)
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The admissible control set a is unchanged and it is noted that (11)

does not depend on a by ([3], eq. (2.15) - (2.20)).

• .T
1 2

Also J(u) - J E(R (s))ds
0

Theorem 2 The equation, for any fixed u E a,

dV(t,w) = (aV(t,w) + u(twv))dt

+ cp(t)dW3(t.w)

V(O~w) - EXo(w) (12)

has a unique solution.

Proof. This follows from the boundedness of p, u, f, g in (0,T] by

([41, Theorem I).

Theorem 3 The optimal u E a for the system (10), (11) is expressible

as

u0 (t,w) = -g(t)sign X(t,w). (13)

Proof. This follows since g(t) > 0 factors out of both sides of ([31,

eq. (2.26)), and Theorem 2.

IV Complete Observation

Consider a one-dimensional complete observation control problem with

state X(t,w), control u(t,w) and Wiener process W(t,w) defined by

dX(t,w) - u(t,w)dt + dw(t,w) (14)
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and

X(O,w) x

The (1P) are as in III.

With admissible control set

a - (u I Iu( ,)I _ g(t), 0 < t < T)

with continuous g(t) > 0, 0 < t < T, as in (9).

The performance index for given u E C

is

rT.
J(u) J EJX(tw)J dt (15)

for A a fixed positive integer. The object is to find u E a

so that

JU) < J(u), u E a.

For £ - 1, 2, this problem was solved in [I).

Theorem 4 Under (9), (14), (15), for all A > 1, the solution is

u0(t,w) - -g(t)sign x(t,w). (16)

Proof. The equation, with X(O,w) = x

X(t,w) - -g(t)sign X(t,w)dt + dW(t,w)

has a unique solution ((41, Theore.m 1) by boundedness of g.

The reasoning of ((1], pp. 93, 96, eq. (2.15)) implies that the same

optimal u0 holds for all £ > 1 in (15). The argument is as in Theorem 3.
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